--- title: "demo-asus" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{demo-asus} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- This `vignette` provides a quick demo of the functionalities of the `asus` package. We will consider a two sample estimation problem where the goal is to estimate an $n$ dimensional parameter $\boldsymbol{\theta} =\boldsymbol{\theta}_x-\boldsymbol{\theta}_y$ based on observations $X_i\sim N(\theta_{x,i},1)$ and $Y_i\sim N(\theta_{y,i},1)$ where $i=1,\ldots,n$. ## Example 1 - SureShrink estimator and SURE estimate of risk ```{r fig1, fig.height = 4, fig.width = 6, fig.align = "center"} # Parameter of interest n<-500 set.seed(42) theta.x<- c(matrix(0,1,400),runif(n-400,2,6)) set.seed(42) theta.y<- c(matrix(0,1,450),runif(n-450,2,3)) theta<-theta.x-theta.y #observations v.x<- rep(1,n) v.y<- rep(1,n) set.seed(42) x<-rnorm(n,theta.x,v.x) set.seed(84) y<-rnorm(n,theta.y,v.y) # SureShrink estimator of theta library("asus") u<- x-y v.u<- v.x+v.y theta.ss<-sureshrink(u,v.u)$est plot(1:n,theta,pch=19,ylab ="theta and theta.ss in red") points(1:n,theta.ss,col="red",pch=19) # SURE estimate of risk of theta.hat and choice of threshold out<- sureshrink.mse(u,v.u) mse.ss<- out$sure.est t.ss<- out$t ``` ## Example 2 - Extended James-Stein estimator ```{r fig2, fig.height = 4, fig.width = 6, fig.align = "center"} # EJS estimator of theta theta.ejs<- ejs(u,v.u) plot(1:n,theta,pch=19,ylab ="theta and theta.ejs in green") points(1:n,theta.ejs,col="green",pch=19) ``` ## Example 3 - ASUS and SURE estimate of risk of ASUS ```{r fig3, fig.height = 4, fig.width = 6, fig.align = "center"} # side information on theta s<- abs(x+y) out<- asus(u,v.u,s) # ASUS estimator theta.asus<- out$est plot(1:n,theta,pch=19,ylab ="theta and theta.asus in cyan") points(1:n,theta.asus,col="cyan",pch=19) # SURE estimate of risk of ASUS mse.asus<-out$mse # Grouping and thresholding parameters tau<- out$tau t.asus<- out$t # Group sizes n.asus<- out$size ``` You will notice that mse.asus = `r mse.asus` < `r mse.ss` = mse.ss due to the efficient incorporation of side information $\boldsymbol{s}$ into the shrinkage estimation procedure. Finally in the plot above, the green and the red dots represent the two groups constructed by ASUS using the side information in $\boldsymbol{s}$. ```{r fig4, fig.height = 4, fig.width = 6, fig.align = "center"} i1<- (s<=tau) i2<-(s>tau) idx<-1:n plot(idx[i1],u[i1],xlab="1:n",ylab="u",col="red",pch=19)#group 1 points(idx[i2],u[i2],col="green",pch=19)#group 2 ``` Notice how the two groups differ with respect to their signal sparsity with group 1 (red) being more sparse than group 2 (green). Indeed, t.asus[1] = `r t.asus[1]` > `r t.asus[2]` = t.asus[2] and compare this with t.ss = `r t.ss`.