Package: asus 1.5.0

Trambak Banerjee

asus: Adaptive SURE Thresholding Using Side Information

Provides the ASUS procedure for estimating a high dimensional sparse parameter in the presence of auxiliary data that encode side information on sparsity. It is a robust data combination procedure in the sense that even when pooling non-informative auxiliary data ASUS would be at least as efficient as competing soft thresholding based methods that do not use auxiliary data. For more information, please see the paper Adaptive Sparse Estimation with Side Information by Banerjee, Mukherjee and Sun (JASA 2020).

Authors:Trambak Banerjee [aut, cre], Gourab Mukherjee [aut], Wenguang Sun [aut]

asus_1.5.0.tar.gz
asus_1.5.0.zip(r-4.5)asus_1.5.0.zip(r-4.4)asus_1.5.0.zip(r-4.3)
asus_1.5.0.tgz(r-4.5-any)asus_1.5.0.tgz(r-4.4-any)asus_1.5.0.tgz(r-4.3-any)
asus_1.5.0.tar.gz(r-4.5-noble)asus_1.5.0.tar.gz(r-4.4-noble)
asus_1.5.0.tgz(r-4.4-emscripten)asus_1.5.0.tgz(r-4.3-emscripten)
asus.pdf |asus.html
asus/json (API)
NEWS

# Install 'asus' in R:
install.packages('asus', repos = c('https://trambakbanerjee.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/trambakbanerjee/asus/issues

On CRAN:

Conda:

4.29 score 3 stars 13 scripts 682 downloads 6 exports 2 dependencies

Last updated 2 years agofrom:cb074d872a. Checks:1 OK, 8 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 17 2025
R-4.5-winNOTEMar 17 2025
R-4.5-macNOTEMar 17 2025
R-4.5-linuxNOTEMar 17 2025
R-4.4-winNOTEMar 17 2025
R-4.4-macNOTEMar 17 2025
R-4.4-linuxNOTEMar 17 2025
R-4.3-winNOTEMar 17 2025
R-4.3-macNOTEMar 17 2025

Exports:asusasus.cutsejssoftThsureshrinksureshrink.mse

Dependencies:MASSwavethresh

demo-asus

Rendered fromdemo-asus.Rmdusingknitr::rmarkdownon Mar 17 2025.

Last update: 2023-08-24
Started: 2017-09-26